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In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more
interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific
progress significantly. However, the currently most frequently used explicit bead models exhibit severe limi-
tations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound
mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based
on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly
attractive computational cost on the basis of a far-developed mathematical background.
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I. INTRODUCTION

For several decades Brownian dynamics of polymers has
been a field attracting increasing interest. In many cases
progress in active research areas such as material science,
macromolecular chemistry, bioengineering, and biophysics is
intrinsically tied to the understanding of the dynamics of
polymers under thermal forces. Often the complexity of the
systems under study makes computer simulations the pre-
ferred, sometimes even the only scientific tool. Since the
1970s simulation of Brownian polymer dynamics predomi-
nantly resorts to so-called bead-spring or bead-rod models.
Although these models have successfully been used to deal
with a broad variety of problems, e.g., �1–3�, their limitations
are well known and have become a serious obstacle on the
way to further progress.

Classical explicit bead-spring simulations exhibit severe
difficulties in dealing with stiff or semiflexible polymers due
to their explicit time integration scheme and the resulting
tremendous reduction of time step size. To overcome this
problem bead-rod models were developed where the highest
eigenfrequencies were cancelled out of the system by artifi-
cially imposed rigid constraints. However, these bead-rod
models mainly suffer from two drawbacks: on the one hand
these models cannot be applied straightforward �4� as the
artificial constraints would tamper with the simulated dy-
namics. Intricate extensions are needed �5� to circumvent this
difficulty. On the other hand bead-rod models cannot account
for any axial strain making a large variety of phenomena
plain inaccessible for these models. Furthermore all bead-
based models have problems in accounting for the full range
of mechanical phenomena present in polymer physics. For
example, shear deformation, as it may arise in thick poly-
mers or polymer bundles �6�, cannot be captured in a coarse-
grained fashion by bead models. In addition to that, model-
ing polymers as a chain of beads entails severe difficulties in
accounting correctly for anisotropic friction of polymers �7�.
Finally, both the method and the quality of the solutions
gained by bead models lack any careful mathematical analy-
sis. This complicates using simulations in a predictive sense

separate from concomitant experimental and analytical work
significantly.

There exist a number of key issues especially in biophys-
ics and bioengineering, which could not yet be addressed by
proper simulation tools, especially in the field of cell divi-
sion, cell motility, and mechanotransduction. The above-
mentioned shortcomings of state-of-the-art Brownian dy-
namics simulation tools may be considered to be among the
main reasons for this deficiency of simulation technology.

From the above arguments we may conclude that there is
a significant need for a new framework for Brownian dynam-
ics simulations in polymer physics. In this paper we intro-
duce such a new framework: we demonstrate how the finite-
element method can be applied to Brownian polymer
dynamics. In opposition to the above described simulation
techniques this method can be derived from a clearly defined
set of assumptions in a strictly mathematical manner. As a
consequence it allows for establishing rigorous theorems
about the quality of the numerical results. The finite-element
method is well known to be capable of accounting for all
relevant mechanical effects in one-dimensional continua.
Therefore, it has already been applied to polymer mechanics
�8–12�. However, previous studies have always been re-
stricted to static elasticity or at the most to deterministic
dynamics of polymers and polymer networks. None of these
studies has included stochastic mechanics of polymers so far.
However, it is generally accepted that the stochastic mechan-
ics of polymers may not be neglected for the quantitative and
often even qualitative understanding of polymer mechanics.
In this paper we describe how to make use of finite elements
for the spatial discretization of Brownian polymer dynamics.
Together with an implicit time integration scheme this forms
an ideal framework for large scale simulations of even com-
plete polymer networks such as studied experimentally in
�13�. On the basis of several examples we demonstrate the
method’s efficiency and reliability. The finite-element
method is a de facto standard in many fields of computa-
tional engineering. For the present work an in-house finite-
element code was employed. However, an extension of com-
monly available finite-element codes with the aim of
capturing Brownian dynamics as described in this paper is to
the authors’ estimation straightforward. This represents an
essential advantage over other Brownian dynamics simula-*wall@lnm.mw.tum.de
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tion tools which often can be used after long and tedious
in-house coding only.

This paper is organized as follows: in Sec. II we describe
the mathematical model of Brownian polymer dynamics
used in this paper. As the finite-element method has not yet
been applied to Brownian dynamics, in Sec. III we give a
brief introduction into the basics of the finite-element
method for the reader not yet familiar with this method. Fi-
nally, in Sec. IV we present a finite-element formulation of
the mathematical model of Sec. II. Throughout this paper we
will usually employ lower case letters for continuous func-
tions and variables whereas we will use upper case letters for
discrete variables and functions.

II. BROWNIAN POLYMER DYNAMICS

In this section we describe a mathematical model for
Brownian polymer dynamics. As common in the theoretical
analysis of polymer dynamics �11,14,15�, we model poly-
mers on a coarse-grained scale as one-dimensional beamlike
continua. For simplicity of this presentation we restrict our-
selves to the consideration of the two-dimensional case in the
x-y plane. However, an extension to three dimensions is
straight forward and already realized in our research code.

A. Static polymer model

There is rich theoretical work on beamlike continua.
Rather simplified models such as the Euler-Bernoulli model
account for axial stress and bending only assuming a zero
shear deformation. Although for many polymers the Euler-
Bernoulli model is often a good approximation due to their
large slenderness ratio, for thick filaments and especially
bundles one may have to account for shear deformation, too
�6�. Therefore, we resort to Reissner’s beam theory, which is
well known to allow for axial stress, bending, and shear in a
geometrically exact manner. The basis of that theory is the
kinematic assumption that a beamlike continuum can be
modeled as a curve in space, to each point on which a plain
cross section is assigned �cf. Fig. 1�. The curve itself is called
the neutral line. Let �� �0;L� be the curve parameter with
curve length L in space and let �= ��x���y����T :0���L� be
the set of all points on the neutral line. Note that in this case
the Jacobi determinant of the map between parameter space
and physical space is one. Let ���� be the angle of the cross
section in space at the point �x���y����T on the neutral line. In
the classical Euler-Bernoulli model this cross section is as-
sumed to remain constantly orthogonal to the neutral line as
a zero shear deformation is assumed. Therefore within an
Euler-Bernoulli model the orientation of the cross section in
space has not to be described explicitly by an angle ���� but
is rather given implicitly by the shape of the neutral line

itself. In opposition to that Reissner’s beam theory allows for
a rotation of the cross section relative to the neutral line due
to shear deformation. According to Reissner’s model the
continuum in some current configuration may be described
completely by vectors x���= �x���y��������T. With some
known stress-free reference configuration given by X���
= �X���Y��������T, the continuum can be described by the
displacement vector u��� between the reference configura-
tion and the current configuration with

u��� = „�x���,�y���,�����…T. �1�

The method of sections �16� reveals the internal elastic
forces Nint orthogonal to the cross section and Qint parallel to
the cross section as well as the internal moment Mint as cru-
cial for the elasticity of beams. According to �17� these quan-
tities are given for a stress-free reference configuration by

�Nint

Qint

Mint
� = �EA 0 0

0 GA 0

0 0 EI
�	TT�x�

dx

d�
− TT�X�

dX

d�

 , �2�

T�x� = �cos��� − sin��� 0

sin��� cos��� 0

0 0 1
� . �3�

Here the area of the beam cross section is denoted by A,
Young’s modulus of the beam material by E, and the shear
modulus by G. The products EA, GA, and EI denote the
stretching, shear, and bending stiffness, respectively. The
triad T�x� is a rotation matrix rotating from a local coordi-
nate system which is attached to the beam cross section into
the global x-y coordinate system. Let the external forces per
unit length in x and y directions be given by fext,x and fext,y
and the external moment per unit length by mext. Then the
static elasticity of the beam can be described according to
�16� by

fel�u,x� = fext�x� , �4�

fel�u,x� = T�x��dNint

d�

dQint

d�

dMint

d�
− Qint�T

, �5�

fext�x� = �fext,x fext,y mext �T. �6�

B. Dynamic polymer model

The static model of Sec. II A can be extended to cover
also dynamics. The field of Brownian polymer dynamics is
mostly concerned with problems where the equation of mo-
tion of a polymer is determined by elastic forces fel�u ,x� due
to structural deformation, hydrodynamic forces fvisc�u , u̇ ,x�
due to viscous damping by a surrounding fluid, and some
external forces. The external forces acting on the polymer
may be considered as the sum of the two forces fext�x� and
fstoch�x�. Here fstoch�x� represents the stochastic thermody-
namic forces causing Brownian motion. The variable fext�x�
just collects all other forces, e.g., those caused by some force
field which the polymer is subject to. Inertia can be neglected

y

x

cross section

neutral line

θ

FIG. 1. A one-dimensional mechanical continuum �left� may be
modeled according to Reissner’s theory �right�.
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usually in Brownian polymer dynamics. Therefore Eq. �4�
can be generalized in the dynamic case by

fel�u,x� + fvisc�u,u̇,x� = fext�x� + fstoch�x� . �7�

All variables in the above equation should be interpreted as
forces or moments per unit length. A brief remark as to the
notation seems worthwhile at this point: Eq. �7� has to be
satisfied at each point in time. Therefore all quantities in Eq.
�7� depend in general on the time t. For simplicity we will
omit the parameter t whenever it is not essential for under-
standing the following equations. Yet we implicitly assume
that all the following equations always refer to some specific
point in time.

In order to explicitly determine the friction force
fvisc�u , u̇ ,x� we need to agree on a friction model first. In-
deed several different friction models have been employed so
far in polymer physics. Simple models are based on just one
single friction coefficient �3�. More intricate ones account for
hydrodynamic interactions by means of different friction co-
efficients parallel and perpendicular to the polymer backbone
�2,7� or by a consideration of the Navier-Stokes equations’
characteristics �18,19�. As this paper represents a mere intro-
duction into the simulation of Brownian polymer dynamics
by means of finite elements, we restrict ourselves to the
simple model of homogeneous isotropic friction coefficients
� entailing velocity proportional damping forces. In this case
the friction force per length is given by

fvisc�u̇� = cu̇, c = �� 0 0

0 � 0

0 0 0
� . �8�

Note that in Eq. �8� we assume that the velocity of the poly-
mer backbone is given by the velocity of the neutral line in
the Reissner beam model which is a suitable approximation
for slender continua such as polymers. It is underlined that
an isotropic friction model makes all spurious drift terms
vanish and allows for abstaining from any discussion of the
Itō-Stratonovich dilemma. Yet we would like to briefly men-
tion that a careful analysis reveals that even for a more real-
istic anisotropic friction model the here proposed framework
can be applied without difficulties.

Studying Brownian dynamics of polymers, a typical
choice for � would be setting �=4	
 with fluid viscosity 

and adding some correction factor �20�. In Brownian dynam-
ics viscous drag forces always go along with stochastic ther-
mal forces fstoch according to the fluctuation-dissipation theo-
rem. These forces are usually modeled as Gaussian random
variables with zero correlation time, mean value zero, and a
mean square depending on temperature and friction coeffi-
cients. Precisely �14�, they are described by


fstoch�x,t�� = 0, �9a�


fstoch�x,t� � fstoch�x�,t��� = 2kBTc�tt��xx�, �9b�

where t, t� and x, x� represent in general different points in
time and the polymer continuum, respectively, and �tt� is the
Dirac-function with argument t− t�. The temperature of the
fluid is denoted by T, the Boltzmann constant is denoted by

kB, and a mean value is denoted by 
 . �. Thus, the covariance
matrix of the thermal forces equals the scaled damping ma-
trix c.

In the end of this section it seems worthwhile dropping a
brief remark about Eq. �9�: in Eq. �9� we model thermal
forces as Gaussian random variables. This means that even
for an arbitrary large constant value, there is a nonzero prob-
ability that it is exceeded by the amplitude of the thermal
forces at least one point in time. In reality, of course, we may
assume that there is a certain sharp limit for the forces and
that no larger forces arise. This subtlety does not matter
much as we are talking about events of extremely small like-
lihood and thus of minor importance for the numerical suit-
ability of the approach. However, one should keep this detail
in mind for Sec. IV B 2. There we will use weighted inte-
grals in space over the stochastic line load and derive a re-
spective finite-element formulation. A corner stone for con-
vergence theorems in the finite-element theory is Céa’s
lemma which can be established only on the basis of square
integrable right-hand side terms in Eq. �9� �21�. Hence, both
for a realistic model and for making rigorous mathematical
statements quasi-Gaussian random variables with a cut-off
far from the expected value should be employed. Those read-
ers taking a strict point of view may substitute in mind all the
Gaussian random variables in this paper by such quasi-
Gaussian random variables.

III. BASICS OF THE FINITE-ELEMENT METHOD

The finite-element method is a rather general method for
solving partial differential equations. As it has not yet been
applied to the Brownian dynamics of polymers, we give a
brief introduction into the basics of finite elements for the
reader not yet familiar with this method. We abstain from
mathematical discussions for which the reader is referred to
text books such as �21–23�. Rather we restrict ourselves to
the essential ideas and take a merely descriptive point of
view, leaving a series of intricacies completely out of discus-
sion.

A. Strong form

On the domain ��Rd an n-vector valued function u�x� is
defined implicitly by the nonlinear partial differential equa-
tion

fint�u,x� = fext�x� . �10�

Here fint� . � is an n-vector valued differential operator, which
is in general nonlinear. The function fext�x� may be some
inhomogeneity. Of course, for the differential Eq. �10�
boundary conditions have to be specified. However, as the
issue of boundary conditions is not essential for our applica-
tions, we just neglect them in this brief introduction as we
will do for the rest of this paper. Usually Eq. �10� is referred
to as the strong form of a partial differential equation. In
principle an arbitrary partial differential equation may be
written in form �10� and the differential operator fint and
inhomogeneity fext have to be assigned the respective physi-
cal interpretation to. In the context of this paper fint and fext
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may be associated with the left and right-hand side of Eq.
�7�, respectively.

B. Weak form

It can be shown �23� that this strong form is completely
equivalent to the so-called weighted residual formulation.
This formulation is gained by multiplying Eq. �10� by some
so-called weighting function w�x� and integrating over the
whole domain

�
�

w�x�fint�u,x�d� = �
�

w�x�fext�x�d� . �11�

It is important that Eqs. �10� and �11� are only completely
equivalent if we demand Eq. �11� not to be satisfied for one
specific function w�x� only but for any function w�x� out of
a sufficiently large function space V. Integrating Eq. �11� by
parts, one arrives at the so-called weak form.

C. Discretization and Galerkin approximation

The domain � with boundary � may be of arbitrary
shape. We set up a so-called discretization by subdividing the
domain into nel so-called elements ��e�, which form a non-
overlapping decomposition of the domain. Furthermore we
define m points xb�� , 1�b�m, which are referred to as
nodes. In principle these nodes may be situated anywhere on
the domain. The me nodes situated either in the interior of the
element ��e� or on its boundary are denoted by xa�e� , 1�a
�me. The crucial step from Eq. �11� toward a finite-element
formulation is the so-called Galerkin approximation: we as-
sume that the solution function u�x� is not some arbitrary
function. Rather we assign on each element ��e� to each
element node xa�e� a nodal value Ua�e�, whose n components
are unknown at first. Defining some polynomial interpolation
functions Na�e��x�, the solution itself is assumed to be repre-
sentable on each element by

u�x� = �
a=1

me

Na�e��x�Ua�e�, ∀ x � ��e�. �12�

Defining

U�e� = �U1�e�
T

¯ Ume�e�
T �T, �13�

N�e� = �N1�e� 0 � ¯ Nme�e� 0 �
0 � 0 ¯ 0 � 0

� 0 N1�e� ¯ � 0 Nme�e�
�

n��nm � �14�

we can rewrite Eq. �12� as

u�x� = N�e��x�U�e�, ∀ x � ��e�. �15�

As we interpolated the solution function, we also interpolate
the geometry elementwise between the nodes by means of
the same polynomial functions Na�e��x�. Therefore, actually

not the exact domain � with arbitrary boundary � is consid-
ered in a standard finite-element model but rather a domain
with interpolated boundary. In slight abuse of notation we
denote this approximated domain still by �.

To illustrate the above definitions we consider the ex-
ample of a polymer confined to plane motion by means of
two plates. Such a polymer may be modeled by a one-
dimensional domain �, which is a curve embedded in the
two-dimensional space R2. We may place an arbitrary num-
ber of nodes xb on that curve and interpolate it between the
nodes by polynomial functions. Using polynomial interpola-
tion of order p, me= p+1 nodes are assigned to each element.
As the domain, also each single element is in general a
curved line segment embedded in R2. The discretized do-
main is depicted in Fig. 2 for linear and quadratic interpola-
tion between the nodes. For those readers familiar with com-
mon Brownian dynamics simulation models we would like
to briefly mention that at least in some sense the nodes play
a similar role as the beads in a bead-spring or bead-rod
model. At this point already one of the crucial advantages of
the finite-element method compared to classical bead models
becomes evident: bead models approximate the geometry of
a polymer usually by linearly connecting points in space. In
opposition to that, a finite-element model can capture a vir-
tually curved geometry between the nodes thereby allowing
for a much more realistic representation of a fluctuating
polymer.

A corner stone of the finite-element method is switching
between an element perspective and a global perspective
whenever convenient. We may refer to a specific node in an
element ��e� either in elementwise notation as xa�e� or in
global notation as xb, where both notations refer to one and
the same node. Formally this relation may be described via a
map 
�xa�e��=xb. When, for example, numbering the nodes
both globally and locally from the left to the right, one would
refer to the rightmost node in the linear discretization in Fig.
2 in global notation as x5 and in elementwise notation as
x2�4�. In analogy to the nodes themselves one can define glo-
bal counterparts Ub of the element nodal values Ua�e� and
concatenate them to the global nodal value vector U simi-
larly to Eq. �13�. Furthermore, on a global level we can de-
fine for each node xb a global basis function

element 4

element 2

element 1

element 2

element 1

one−dimensional domain

element 3

FIG. 2. From top to bottom: one-dimensional domain � �con-
tinued line� embedded in R2 discretized by nodes �black dots�. Be-
tween the nodes the original domain may be interpolated, e.g., lin-
early �dashed line� or quadratically �dot-dashed line�.
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Nb�x� = �Na�e��x� if ∃ �a,e�:
�xa�e�� = xb,x � ��e�

0 else.
�
�16�

Thus, if a point x lies within some element ��e� within which
the global node xb has some element counterpart xa�e�, the
global basis function Nb�x� takes the same value as does
Na�e��x�. If the point x lies outside any element within which
the global node corresponds to a local one, the global shape
function becomes zero. By means of Eq. �16� one can define
a global n�nm basis function matrix N�x� in complete anal-
ogy to Eq. �14� and rewrite Eq. �15� as

u�x� = N�x�U, ∀ x � � . �17�

As we assumed for the solution function a certain kind of
structure in Eq. �12�, we require that also the weighting func-
tions w�x� in Eq. �11� are not arbitrary functions. Rather we
admit as weighing functions only the global interpolation
functions Nb�x�. By these assumptions Eq. �11� may be re-
written as

�
�

Nb�x�fint�N�x�U�d� = �
�

Nb�x�fext�x�d� . �18�

Looping through all admitted weighting functions Nb�x�, Eq.
�18� leads to a system of mn scalar equations for the nm so
far unknown elements of the global nodal value vector U.
This system of equations can be written as

Fint = Fext, �19�

with

Fint = �
�

NT�x�fint�N�x�U�d� , �20�

Fext = �
�

NT�x�fext�x�d� . �21�

Equation �19� can be interpreted as an equilibrium between a
discrete internal and external force vector Fint and Fext, re-
spectively. The in general nonlinear equation system �19� can
be solved, e.g., by means of Newton-Raphson iterations.
Therefore we need to evaluate the discrete force vectors Fint,
Fext as well as the derivative

K =
�Fint

�U
. �22�

In structural mechanics the matrix K is usually called the
stiffness matrix. As the quantities Fint, Fext, and K are inte-
grals over the whole domain � and the elements ��e� form a
nonoverlapping decomposition of �, we may compute the
contributions of each element to the integrals Fint, Fext, and
K separately. The contributions on element level are the so-
called element force vectors Fint�e�, Fext�e�, and element stiff-
ness matrices K�e� defined by

Fint�e� = �
��e�

N�e�
T �x�fint�N�e��x�U�e��d� , �23�

Fext�e� = �
��e�

N�e�
T �x�fext�x�d� , �24�

K�e� =
�Fint�e�

�U�e�
. �25�

The above introduction to the basics of the finite-element
method can be summed up as follows: any nonlinear partial
differential Eq. �10� can be written in weak form. Discretiz-
ing this formulation by polynomial interpolation leads to a
nonlinear system of algebraic Eqs. �19�. This system of equa-
tions can be solved by iterative evaluation of the element
force vectors and element stiffness matrices given in Eqs.
�23�–�25�.

In the end of this brief introduction into the finite-element
method we would like to mention some important facts: as
shown above the finite-element method is a numerical
method which can be derived in a rigorous mathematical
manner from an in principle arbitrary nonlinear partial dif-
ferential equation. This sound theoretical foundation entails
two important consequences. First, applying the finite-
element method the set of assumptions underlying to the
simulation method is completely transparent: essentially it is
the same set used to formulate the partial differential Eq.
�10�. Second rigorous statements about the properties of the
method �accuracy, convergence, stability,…� can be derived.
This is in striking contrast to the simulation models applied
so far to Brownian dynamics: neither for bead-spring nor for
bead-rod models any such clear statements about the simu-
lation results or assumptions underlying to the model have
been presented so far.

IV. FINITE-ELEMENT APPROACH TO BROWNIAN
POLYMER DYNAMICS

To numerically simulate the phenomenon of Brownian
polymer dynamics described in Sec. II one needs to intro-
duce a discretization both in space and time. The finite-
element method as introduced in Sec. III is only used for a
discretization in space here so that we have to perform a
discretization in time separately.

A. Discretization in time

For the discretization in time Brownian dynamics simula-
tions usually resort to the so called explicit Euler scheme.
Although this time integration scheme goes along with low
computational cost per time step, it suffers crucially from
numerical stability problems. To alleviate this drawback sev-
eral strategies have been worked out �2,7�. These strategies
typically try to modify the discretization in space in order to
gain numerical stability in the time integration. In the simu-
lation framework presented in this paper we pursue a com-
pletely different approach. Mainly two reasons may be iden-
tified why explicit time integration is that popular for bead
models despite its severe stability problems: on one hand
there are several pitfalls both with respect to the theory and
the numerics of implicit stochastic time integration. On the
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other hand the implementation of implicit schemes is not as
straightforward as of explicit schemes. Concerning the here
presented finite-element model, the theoretical and numerical
issues of implicit time integration are comprehensively dis-
cussed and resolved in �24�. As explained in the end of Sec.
IV B 2, the implementation is easily possible on the basis of
already existing finite-element codes. Hence, in this paper
we apply the implicit backward Euler time integration
scheme, thereby avoiding any numerical stability problem.
Discretizing time by steps of length �t allows writing the
velocity u̇�x� as

u̇i+1�x� =
ui+1�x� − ui�x�

�t
. �26�

Here an upper index i means that a variable is taken at the
point in time ti

ª i�t. Modeling time by discrete steps �t
requires rewriting Eq. �9� using a time discrete Dirac func-
tion so that we arrive at


fstoch�x,ti�� = 0, �27a�


fstoch�x,ti� � fstoch�x�,tj�� =
2kBT

�t
c�ij�xx�. �27b�

Here �ij is a Kronecker-� function. In Eq. �27� we implicitly
assume that the stochastic forces are constant during each
time step, respectively. In simulation methods where not sto-
chastic forces are applied but rather Brownian displacements
in each time step, these are computed neglecting the varia-
tion in the noise term during the time step. Turning the equa-
tion of motion Eq. �7� into the equivalent stochastic partial
differential equation reveals that this common way of apply-
ing Brownian displacements is equivalent to the assumption
of stochastic forces constant over each time step, respec-
tively. We briefly would like to mention in the end of this
section that for a finite-element approach an explicit time
integration scheme such as used for classical bead-spring
models could be employed as well. The decision for the im-
plicit scheme is just based on the fact that in polymer physics
implicit time integration is often more efficient in terms of
computational cost.

B. Discretization in space

In Eqs. �19�–�21� an equilibrium between discrete force
vectors Fint and Fext was shown to lead to an approximated
solution of Eq. �10�. Therefore for the partial differential Eq.
�7� a finite-element formulation amounts to an equilibrium

Fel + Fvisc = Fext + Fstoch. �28�

Here Fel and Fvisc can be derived from fel in Eq. �5� and fvisc
in Eq. �8� in the same way Fint in Eq. �20� has been derived
from fint in Eq. �10�. Similarly, the external force vectors Fext
and Fstoch can be derived from fext in Eq. �6� and fstoch in Eq.
�9� as Fext in Eq. �21� was derived from fext in Eq. �10�. As
described in Sec. III the finite-element solution just requires
the evaluation of the respective element force vectors Fel�e�,
Fvisc�e�, Fstoch�e�, Fext�e�, and element stiffness matrices Kel�e�
and Kvisc�e�. In the following subsections we describe in

greater detail how to evaluate these quantities. To describe
the dynamics of a beamlike continuum as introduced in Sec.
II A the solution function �1� has to be approximated accord-
ing to Eq. �17� by means of nodal values

Ub = ��xb,�yb,��b�T. �29�

The first two coordinates describe the displacement of the
node xb in space. Each node represents a point on the neutral
line of the continuum. The third coordinate ��b gives the
difference in orientation of the cross section between the
current configuration and the reference configuration.

1. Static polymer model

Static finite-element formulations for beamlike continua
have long been studied in computational engineering. Thus
there exists rich literature about how to evaluate the elastic
and external element force vectors and stiffness matrices
Fel�e�, Fext�e� and Kel�e� following from Reissner’s beam
theory. For a detailed description the reader is referred to
�17�.

2. Dynamic polymer model

Although finite-element simulations have already been
applied to polymer networks several times �8–12� these
simulations were always limited to either the static case or
merely deterministic dynamics. In opposition to that, in this
section we demonstrate how to capture also Brownian dy-
namics by means of a finite-element model. Therefore we
will describe in detail how to evaluate the quantities Fvisc�e�,
Fstoch�e� and Kvisc�e�.

Using Eqs. �15� and �26� a discretization of the velocity
both in space and time is given by

u̇i+1�x� = N�e��x�
U�e�

i+1 − U�e�
i

�t
, x � ��e�. �30�

Making use of Eqs. �8�, �23�, and �30�, we can define an
element damping force vector Fvisc�e� by

Fvisc�e� = �
��e�

N�e�
T �x�fviscd�

= �
��e�

N�e�
T �x�cN�e��x�

U�e�
i+1 − U�e�

i

�t
d� . �31�

Defining the element nodal velocity vector U̇�e��x� as the
derivative of U�e� with respect to time and the element damp-
ing matrix

C�e� = �
��e�

N�e�
T �x�cN�e��x�d� , �32�

we may rewrite Eq. �31� by means of Eq. �32� as

Fvisc�e� = C�e�U̇�e�. �33�

The partial derivative of Fvisc�e� with respect to the nodal
variables is given by
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Kvisc�e� =
1

�t
C�e�. �34�

Finally we discuss the discretization of the stochastic force
vector fstoch by a stochastic element force vector Fstoch�e�.
According to Eq. �9� and �24� the discrete stochastic force
vector on element level is

Fstoch�e� = �
��e�

N�e�
T �x�fstoch�x�d� . �35�

To simplify Eq. �35�, we recall that for polymers ��e� is just
a curved line of length L�e� embedded into higher dimen-
sions. We subdivide this line into nc intervals of equal length
hc=L�e� /nc, where nc�1. We define nc sample points x̂k,
with 1�k�nc in the middle of each interval, respectively.
Whereas in Eq. �27� implicitly a zero correlation length in
space was assumed we model the thermal forces now as
piecewise constant on each interval of the �small� length hc
and uncorrelated on distinct intervals. Similarly to the dis-
cretization in time, this discretization in space goes along
with changing from a continuous Dirac function ��x−x�� in
space to the discrete one ��x̂n− x̂m�=1 /hc�nm which gives


fstoch�x̂n,ti�� = 0, �36a�


fstoch�x̂n,ti� � fstoch�x̂m,tj�� =
2kBT

�thc
c�ij�nm. �36b�

Thus, we may approximate the integral in Eq. �35� at a cer-
tain point in time by a sum and write

Fstoch�e� = �
n=1

nc

N�e�
T �x̂n�fstoch�x̂n�hc + O�hc

2� . �37�

The error intrinsic to a finite-element model typically scales
with the characteristic element length L�e�. Having assumed
hc�L�e�, we neglect the error scaling with hc

2 for the rest of
this paper. As Fstoch�e� is a sum of Gaussian random variables
with mean value zero, it is also a Gaussian random variable
with mean value zero. Its second moment is given by


Fstoch�e�
�2 � =�	�

n=1

nc

N�e�
T �x̂n�fstoch�x̂n�hc
�2�

= �
n=1

nc

N�e�
T �x̂n�cN�e��x̂n�

2kBThc

�t

=
2kBT

�t
�

��e�

N�e�
T �x�cN�e��x�d��e�. �38�

Here by � . ��2 we denote a dyadic product of a vector with
itself. According to the first line of Eq. �38� each element of
the covariance matrix of the stochastic element force vectors
is theoretically a sum of altogether nc

2 summands. Each of
these summands represents a product of the contributions of
two intervals of length hc. By Eq. �36� the expectation value
of each product can be evaluated. Especially the products of
contributions of distinct intervals have a zero expectation
value. Equation �38� relates to one specific point in time. The

correlation between the stochastic forces at distinct discrete
points in time is zero. Hence, the element damping matrix
C�e� from Eq. �32� allows for uniquely characterizing the
stochastic element force vector Fstoch�e� by


Fstoch�e�
i � = 0, �39a�


Fstoch�e�
i

� Fstoch�e�
j � =

2kBT�ij

�t
C�e�. �39b�

At this point it seems worthwhile dropping some brief re-
marks about the above calculations: modeling the stochastic
forces with a correlation length hc=L�e� /nc in space and as-
suming nc�1 is justified from physics: the thermal forces
stem from collisions with molecules in the surrounding fluid
and are therefore assumed to have a correlation length much
smaller than the polymer or element length. In the above
model the stochastic forces are basically considered as sto-
chastic variables resulting from functions piecewise constant
over intervals of length hc in the limit hc→0. This point of
view has two important implications. First it is the reason
why the stochastic forces can be discretized elementwise
without accounting for correlations between different ele-
ments. Second, in general it is all but obvious, which math-
ematical consequences a polynomial interpolation of the
thermal forces in space may have in the limit hc→0. Indeed
a rigorous survey of these consequences would require
lengthy mathematical discussions and is therefore skipped in
this paper. Yet, we would like to briefly mention that the
polynomial interpolation of thermal forces according to the
above model may be justified in a similar way as demon-
strated in �25�. It should also be underlined that the above
mathematical derivation of discrete force vectors is in strik-
ing contrast to the merely heuristic stochastic forces em-
ployed in bead-simulation models.

Another remark should be dedicated to the main finding
of Eq. �39�: the element damping matrix C�e� is the discrete
counterpart of the damping matrix c in Eq. �8�. And as the
continuous damping matrix c is the scaled covariance matrix
for the continuous thermal forces fstoch �see Eq. �9�� the same
holds true for the discrete damping matrix C�e� and the dis-
crete thermal forces Fstoch�e�. One should note carefully that
this relation is not a matter of course in the discrete case.
Rather one can verify readily that it holds true if and only if
the discretization in space is based on a Bubnov-Galerkin
method and not on a Petrov-Galerkin method �22�.

In the end of this section it seems worthwhile recalling the
essentials of Brownian dynamics simulations with finite ele-
ments: according to Eq. �28�, a finite-element simulation of
Brownian dynamics requires in each time step between two
points in time ti and ti+1 the following implicit system of
equations to be solved:

Fel
i+1�Ui+1� + C

Ui+1 − Ui

�t
= Fext

i+1�Ui+1� + Fstoch
i+1 �Ui+1� .

�40�

Here Fvisc
i+1 in Eq. �28� has been replaced according to Eqs.

�30� and �33�. The system of Eqs. �40� to be solved is differ-
ent from the systems arising in ordinary finite-element simu-
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lations only by the thermal and viscous forces. Consequently
an ordinary finite-element program can be upgraded in order
to perform Brownian dynamics simulations just by imple-
menting methods for evaluating the discrete viscous and
thermal forces Fvisc�e�, Fstoch�e� and the viscous stiffness ma-
trices Kvisc�e�. These quantities can be computed easily in
each time step from Eqs. �33�, �34�, and �39�, once the ele-
ment damping matrix C�e� has been computed from Eq. �32�.
For the above simple friction model the damping matrix can
be computed at the beginning of a simulation once. For ex-
ample, choosing linear basis functions Na�e� gives

Clin�e� =
4	
L�e�

3 �
1 0 0

1

2
0 0

0 1 0 0
1

2
0

0 0 0 0 0 0

1

2
0 0 1 0 0

0
1

2
0 0 1 0

0 0 0 0 0 0

� . �41�

For all the examples in Sec. V linear basis functions and thus
Eq. �41� were employed.

V. EXAMPLES

The above finite-element model of Brownian polymer dy-
namics was subject to a rigorous validation and verification
process. In this section we present several out of all the simu-
lated examples which show that the model is capable of
simulating Brownian polymer dynamics in accordance with
theoretical predictions and experimental data. When refer-
ring to physical or numerical parameters we omit units as all
values are given in terms of the basis units micrometer, sec-
ond, milligram, and Kelvin.

A. Brownian dynamics of a polymer with hinged ends

A typical test case to study Brownian dynamics of poly-
mers is the dynamics of a filament with hinged ends in an x-y

plane. Here we consider a polymer whose ends are freely
movable in x direction and attached in y direction. In the
absence of bending its backbone is aligned with the x axis.
Both end points are assumed to be hinged, which means that
a zero bending moment at both end points is assumed. The
end-to-end distance R�t� at a certain point in time t changes
steadily due to stochastic thermal forces acting on the poly-
mer and causing varying bending deformations. The dynam-
ics of R�t� may be characterized by means of the so-called
mean-square difference �MSD� of the end-to-end distance,
which is defined by

�R2�t� � 
�R�t� − R�0��2� . �42�

Obviously, the MSD starts at zero and increases due to the
fact that the stochastic thermal forces continuously change
the shape of the polymer and thus the end-to-end distance. At
each point in time t�0 the random thermal forces affect a
filament either in such a way that �R�t�−R�0��2 increases or
decreases. Roughly spoken we may say: the more similar the
shape of the polymer at a point in time t is compared to the
initial shape the larger the probability that the random forces
increase �R�t�−R�0��2 at that point in time and vice versa.
Therefore a saturation of the MSD can be observed after
some time when the polymers in the observed ensemble have
changed their shape sufficiently compared to the initial shape
at time zero. For polymers of contour length L and persis-
tence length lp in the stiff limit L / lp�1, in �26� a way to
compute the MSD analytically was presented. Thus the MSD
is an excellent test case for the validation of the finite-
element simulation of Brownian polymer dynamics. By
Monte Carlo simulations we studied the convergence of the
MSD gained from finite-element simulations toward the ex-
act value predicted in �26�. As geometric and material pa-
rameters for the polymer we chose a moment of inertia I
=28.74�10−12, a cross section A=19�10−6, a Young’s
modulus E=1.3�109, a Poisson’s ratio �=0.3 and a contour
length L=10. The viscosity of the surrounding fluid is 
=1
�10−3 and its temperature is given by the thermal energy
kBT=4�10−5 with the Boltzmann constant kB. In Fig. 3 the
analytical solution of Hallatschek is compared to the results
of our finite-element simulation. The time t was normalized
with respect to the relaxation time �c of the slowest eigen-
mode, which is computed according to �27� by �c
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FIG. 3. �Color online� Comparison of analytical solution �dashed line� and finite-element simulation �continued line� of normalized MSD
with �from left to right�: Ne=20, �t=0.01, nsample=400 and Ne=20, �t=0.01, nsample=4000 and Ne=40, �t=0.001, nsample=400 and Ne

=40, �t=0.001, nsample=4000.
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��� /EI��L /4.73�4. The MSD was normalized by defining

F�t� =
90lp

2

L4 �R2�t� . �43�

Results for a finite-element simulation with Ne=20 elements
and time step size �t=0.01 as well as Ne=40 elements and
time step size �t=0.001 are presented. In either case the
MSD, which is an ensemble average, was calculated both
from nsample=400 and nsample=4000 realizations.

Apparently a refinement of the discretization in space and
time together with an increase in the number of realizations
makes the simulated MSD converge toward the analytically
predicted one. With Ne=40 elements and nsample=4000 ex-
cellent agreement over more than four decades in time is
achieved already. Although the intention of this paper is by
no means a careful study of computational performance,
some details seem worthwhile being mentioned at this point:
finite-element models with 20 and 40 elements, respectively,
may be compared to bead-spring models with 21 and 41
beads, respectively. For the latter ones the explicit time inte-
gration scheme usually employed requires a time step size
�t�4�10−8 and �t�8�10−9, respectively, for the above
parameter choice. Thus explicit bead-spring simulations re-
quire approximately 1�105 more time steps than the here
introduced implicit finite-element scheme. Certainly the
computational cost of one implicit time step is higher than
the one of an explicit one. Abstaining from a rigorous per-
formance comparison we would just like to present some
very rough figures about computational cost. In our simula-
tions the implicit time integration scheme required approxi-
mately six iteration steps per time step and additionally one
predictor step. In each iteration step the time for evaluation
of the element vectors and matrices on the one hand and for
the solution of the equation system on the other hand were
found to be comparable. For linear elements with six degrees
of freedom one may roughly estimate the evaluation time for
the stiffness matrices six times longer than for the force vec-
tors. In an explicit scheme no stiffness terms have to be
evaluated and the force vectors only one time. Therefore one
may estimate the CPU time for one implicit time step ap-
proximately 91 times higher than for one explicit time step,
which would still make the implicit time integration scheme
surpass an explicit one by a factor of more than 1000 in the
above example with respect to computational cost. The exact
amount of computational cost saved depends, of course, cru-
cially on the choice of parameters. Therefore it is empha-
sized that the above parameter choice is by no means an
exotic one. Rather the above parameters are the ones of a
10 �m long actin filament without additional stabilization,
e.g., by tropomyosin or phalloidin.

Indeed the almost inacceptable computational cost of
bead-spring simulations, which may go along with a param-
eter choice faithfully modeling the physical reality is a well-
known problem. Often it is just circumvented by tampering
with the physical parameters such as done in �28�. Such a
modification is conducted always at the risk of an improper
model, which looses the capability of representing certain
kinds of physical effects in a correct manner. The capability

of the finite-element method to deal with the above example
without any such work around may be considered a signifi-
cant advantage over so far proposed simulation models.

B. Brownian dynamics of a polymer with free ends

The dynamics of semiflexible polymers in dilute solution
has been subject to several careful studies. As a semiflexible
polymer of contour length L undergoes thermal undulations
its effective end-to-end distance R�t� is practically always
smaller than L and changes continuously. Obviously different
end-to-end distances arise with a different probability and the
amplitude of the thermal undulations may be characterized
by the so-called radial distribution function �RDF� G�R�,
which gives the probability for a certain end-to-end distance
R�t�. According to �29� the RDF can be computed in two
dimensions as

G�R� =
1

N
�
l=0

�
�2l�!

�2ll!�2 �

D3/2�2
l + 0.25
���R�

�
��R�5/4exp	 �l + 0.25�2

��R� 
 , �44�

where D3/2� · � is a parabolic cylinder function, ��R��2�1
−R /L�� / �LkBT� and N ensures a normalized distribution.
Equation �44� has been verified experimentally in �27� by
confining the fluctuations of actin polymers to the narrow
gap between two plates and measuring the frequency at
which certain end-to-end distances arose. By curve fitting it
was possible to determine the experimental parameters to L
=13.4, lp=16.2, �=6.55�10−2, E=2.3�109, and kBT
=4.045�10−3, where the nomenclature of the parameters
was chosen as introduced in Sec. V A. Note that the bending
stiffness is approximately twice as large as assumed for the
numerical example in Sec. V A as the experiments in �27�
were conducted with phalloidin stabilized actin filaments.

These numerical data were given as input to our finite-
element Brownian dynamics simulation with Ne=10 and Ne
=40 elements, respectively. Defining the function

��R� =
G�R�R

�
R=0

R=L

G�R�RdR

, �45�

a comparison between the simulated RDF with experimental
data according to �27� and the theoretical prediction accord-
ing to Eq. �44� is presented in Fig. 4. Apparently the simu-
lation results excellently agree both with the theoretical pre-
diction and experiments already for Ne=40 elements and a
time step �t=1�10−4.

C. Rotational diffusion of a microtubule

So far we have always considered a very simple friction
model not accounting for any geometric anisotropy of the
polymer nor for any hydrodynamic interactions. In this final
example we give a brief outlook to a more complex friction
model. As pointed out in �7� hydrodynamic interactions may
be roughly accounted for by means of the logarithmic cor-
rection factor ln�L /d�, where d is the diameter of the poly-
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mer backbone and L is its contour length. The simplest way
to do so is not to choose �=4	
 as suggested in Sec. II B but
�=4	
 ln−1�L /d�. By such a friction model we cannot yet
account for the anisotropy of friction parallel and orthogonal
to the polymer backbone, however, already this minor modi-
fication allows for a reasonable simulation of the rotational
diffusion of stiff polymers or rodlike viruses: we consider
polymer fluctuations confined to two dimensions. Then a stiff
polymer or rodlike virus can be described by the motion of
its center of gravity and its orientation angle � in the x-y
plane. The rotational diffusion coefficient can be defined as

Dr =

��2�

2t
, �46�

where �� is the change in the orientation angle within a time
interval of length t and 
 . � again denotes an ensemble aver-
age. According to �30� for stiff polymers with moderate to
large length-to-diameter ratio the rotational diffusion coeffi-
cient Dr can be well predicted by

Dr =
3kBT

	
L3�ln
L

d
+ 2 ln 2 −

11

6
� . �47�

The analytical predictions by Eq. �47� were verified experi-
mentally several times, e.g., in �31�. Here we make use of
this relation to predict the rotational diffusion coefficient of
microtubles of length L=20. Due to the fact that the persis-
tence length of microtubles is approximately lp=5.99�103

and the length-to-diameter ratio is given by L /d�8.49
�102, Eq. �47� can be readily applied to predict the rota-

tional diffusion coefficient of such microtubules in dilute so-
lution. With parameters �=23.94, kBT=4�10−3, and 

=1.1146�10−3, Eq. �47� leads to Dr,microtubule=2.698�10−3.

To capture the rotational diffusion of such a microtuble a
finite-element discretization with already one single element
is enough �a finer discretization would not change the result�.
For the simulation we chose a time step �t=0.076. In Fig. 5
the angular diffusion 
��2� averaged over 2000 realizations
is plotted over the time t together with the diffusion expected
due to Eq. �47�. Obviously the simulation fits well with com-
mon formulas for the computation of rotational diffusion.
The precise value of the simulated rotational diffusion coef-
ficient may be computed by summing up all the angular in-
crements over all time steps of all realizations and then di-
viding by the number of realizations and time steps. This
procedure gives Dr,simulation=2.895�10−3. The relative error
of 7.3% compared to the theoretical prediction arises due to
the vastly simplified friction model. Yet this numerical ex-
periment confirms the capability of the finite-element method
to well resemble diffusion processes of polymers.

VI. CONCLUSIONS

In this paper we have presented a finite-element frame-
work for Brownian dynamics simulations of polymers. As
polymers are formed by a large number of monomers, com-
mon simulation models such as bead-spring and bead-rod
models model polymers as a series of beads. These beads
represent in a way the single monomers. In reality the size of
each monomer is usually much smaller than the size of the
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FIG. 4. RDF gained from finite-element simulation with Ne=10, �t=1�10−3 �left� and Ne=40, �t=1�10−4 �middle� compared with
experimental data from �27� �right�. The analytical solution according to Eq. �44� is represented by the continued black line, respectively, and
simulation and experimental results are illustrated by the gray histograms.
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whole polmyer. As a consequence in reality the number of
monomers surpasses the number of beads in simulations of-
ten vastly, which renders moot the suitability of the ap-
proach. As against the bead models the finite-element model
takes a completely different point of view: since the polymer
is much larger than each single monomer, a continuum me-
chanical model is employed. The continuum model is based
on a clearly formulated set of modeling assumptions. From
these assumptions a finite-element formulation is derived in
a strictly mathematical manner. Due to this sound theoretical
foundation for each parameter present in the numerical
model a physical interpretation can be given easily. There-
fore finite-element simulations can be applied easily also in a
predictive sense. In opposition to that bead-spring models are
often confronted with the difficulty that certain numerical
parameters such as the friction coefficient of the beads are
difficult to be interpreted physically �7�. So far there has
been a gap between the partial differential equations em-
ployed by theorists in order to describe polymers in an ana-
lytical way and the models employed for the simulation of
polymers. The finite-element model closes this gap: the
finite-element formulation can be proven mathematically to
converge to exactly the solution of the partial differential
equations of theoretical polymer physics.

The finite-element model described in this paper is based
on Reissner’s beam theory and thus capable of representing
not only thin but also comparatively thick polymers such as
microtubles or polymer bundles as arising in certain types of
polymer networks. In opposition to that bead-models are
suitable for very slender filaments only. Bead models are
usually applied together with an explicit time integration
scheme. Often this entails severe problems as to the time step
size. These can be circumvented only by accepting the in-
ability of resolving phenomena of enthalpic axial elasticity in
a bead-rod model. In opposition to that, for the proposed
finite-element model an implicit time integration scheme is
employed in case that numerical stability is an issue. To-
gether with such an implicit time integration scheme the
complete range of polymer elasticity, including both entropic
and enthalpic elasticity, can be accounted for at an acceptable
computational cost. Especially for polymer networks, where
both phenomena may matter significantly for the same fila-
ment at different points in time, this represents a striking
advantage over currently available simulation models. So far
finite-element simulations of polymer networks have been

only employed neglecting Brownian dynamics �8–12�. How-
ever, it is well known that Brownian dynamics contributes
essentially to the mechanics both of single filaments as well
as to the mechanics of polymer networks. For this reason
recent work �28,32� more and more aims at capturing effects
of Brownian dynamics, too. However, computational cost is
well known to form a severe obstacle for such simulations.
Thus, there is urgent need in material science, biophysics,
and bioengineering for a simple and efficient simulation tool
capable of capturing Brownian dynamics in large-scale simu-
lations. The above finite-element model represents such a
tool and might open up the way to the simulation of a variety
of complex processes, e.g., the remodeling of the human
cytoskeleton.

By means of several numerical examples we have shown
good accordance of the proposed approach both with theo-
retical predictions and experimental data. Thus, altogether
the finite-element model may be considered a powerful alter-
native to existing simulation methods for Brownian polymer
dynamics. Its versatility makes it the ideal tool for simulating
both single filaments and large systems of polymers such as
the cytoskeleton in biological cells. Especially from the prac-
tical point of view an application of the finite-element
method allows for exploiting a number of benefits: so far
polymer dynamics simulations are often run by means of
simple self-written in-house codes. Especially when simulat-
ing complex phenomena, not only programming such a code
may be cumbersome. Also using such codes, which often
lack proper interfaces, is tedious. In opposition to that the
finite-element method is a de facto standard in computational
engineering. Therefore simulations can be set up making use
of widely available powerful packages, comfortable user in-
terfaces, and preprocessing and postprocessing tools. Making
use of these tools consequently will open up a convenient
way to large scale Brownian polymer dynamics simulations
in material science and bioengineering.
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